Part Number Hot Search : 
559S75BQ MPF108 PC755 MBRS1 FSC5002U ULN2804A C3964 NM93CS66
Product Description
Full Text Search
 

To Download EFM32G840 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 1 www.silabs.com EFM32G840 datasheet f128/f64/f32 ? arm cortex-m3 cpu platform ? high performance 32-bit processor @ up to 32 mhz ? memory protection unit ? wake-up interrupt controller ? flexible energy management system ? 20 na @ 3 v shutoff mode ? 0.6 a @ 3 v stop mode, including power-on reset, brown-out detector, ram and cpu retention ? 0.9 a @ 3 v deep sleep mode, including rtc with 32.768 khz oscillator, power-on reset, brown-out detector, ram and cpu retention ? 45 a/mhz @ 3 v sleep mode ? 180 a/mhz @ 3 v run mode, with code executed from flash ? 128/64/32 kb flash ? 16/16/8 kb ram ? 56 general purpose i/o pins ? configurable push-pull, open-drain, pull-up/down, input filter, drive strength ? configurable peripheral i/o locations ? 16 asynchronous external interrupts ? output state retention and wake-up from shutoff mode ? 8 channel dma controller ? 8 channel peripheral reflex system (prs) for autonomous in- ter-peripheral signaling ? hardware aes with 128/256-bit keys in 54/75 cycles ? timers/counters ? 3 16-bit timer/counter ? 33 compare/capture/pwm channels ? dead-time insertion on timer0 ? 16-bit low energy timer ? 1 24-bit real-time counter ? 3 8 -bit pulse counter ? watchdog timer with dedicated rc oscillator @ 50 na ? integrated lcd controller for up to 424 segments ? voltage boost, adjustable contrast and autonomous animation ? communication interfaces ? 3 universal synchronous/asynchronous receiv- er/transmitter ? uart/spi/smartcard (iso 7816) /irda ? triple buffered full/half-duplex operation ? 2 low energy uart ? autonomous operation with dma in deep sleep mode ? i 2 c interface with smbus support ? address recognition in stop mode ? ultra low power precision analog peripherals ? 12-bit 1 msamples/s analog to digital converter ? 8 single ended channels/4 differential channels ? on-chip temperature sensor ? 12-bit 500 ksamples/s digital to analog converter ? 2 analog comparator ? capacitive sensing with up to 8 inputs ? supply voltage comparator ? ultra efficient power-on reset and brown-out detec- tor ? 2-pin serial wire debug interface ? 1-pin serial wire viewer ? pre-programmed uart bootloader ? temperature range -40 to 85 oc ? single power supply 1.85 to 3.8 v ? qfn64 package 32-bit arm cortex-m0+, cortex-m3 and cortex-m4 microcontrollers for: ? energy, gas, water and smart metering ? health and fitness applications ? smart accessories ? alarm and security systems ? industrial and home automation
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 2 www.silabs.com 1 ordering information table 1.1 (p. 2 ) shows the available EFM32G840 devices. table 1.1. ordering information ordering code flash (kb) ram (kb) max speed (mhz) supply voltage (v) temperature (oc) package EFM32G840f32-qfn64 32 8 32 1.85 - 3.8 -40 - 85 qfn64 EFM32G840f64-qfn64 64 16 32 1.85 - 3.8 -40 - 85 qfn64 EFM32G840f128-qfn64 128 16 32 1.85 - 3.8 -40 - 85 qfn64 visit www.silabs.com for information on global distributors and representatives.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 3 www.silabs.com 2 system summary 2.1 system introduction the efm32 mcus are the world?s most energy friendly microcontrollers. with a unique combination of the powerful 32-bit arm cortex-m3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the efm32g microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy con- sumption. this section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32G840 devices. for a complete feature set and in-depth information on the modules, the reader is referred to the efm32g reference manual . a block diagram of the EFM32G840 is shown in figure 2.1 (p. 3 ) . figure 2.1. block diagram clock managem ent energy managem ent s e r i a l i n t e r f a c e s i/ o p o r t s c o r e and m e m o r y t i m e r s and t r i gge r s a na l og i n t e r f a c e s s e c u r i t y 32 - b i t bu s p e r i phe r a l r e f l e x s ys t e m a r m c o r t e x ? - m 3 p r o c e ss o r f l a s h m e m o ry [ kb ] p e r i phe r a l r e f l e x sys t e m hi gh f r equen cy rc o sc ill a t o r hi gh f r equen cy c r ys t a l o sc ill a t o r t i m e r / c oun t e r lo w e ne r g y t i m e r? p u l s e c oun t e r 3 x r ea l t i m e c oun t e r lo w f r equen cy c r ys t a l o sc ill a t o r lo w f r equen cy rc o sc ill a t o r l cd c on t r o ll e r v o l t age r egu l a t o r w a t c hdog t i m e r r a m m e m o ry [ kb ] v o l t age c o m pa r a t o r p o w e r- on r e s e t b r o w n - ou t d e t e c t o r a na l og c o m pa r a t o r g ene r a l p u r po s e i/ o lo w e ne r g y u a r t ? w a t c hdog o sc ill a t o r m e m o r y p r o t e c t i on u n i t a dc d a c d m a c on t r o ll e r d ebug i n t e r f a c e ex t e r na l i n t e rr up t s p i n r e s e t u sa r t i 2 c aes 32/ 64/ 128 8/ 16/ 16 3x 4x 24 2x 2x 56 pins 3x 2x g840f32/ 64/ 128 2.1.1 arm cortex-m3 core the arm cortex-m3 includes a 32-bit risc processor which can achieve as much as 1.25 dhrystone mips/mhz. a memory protection unit with support for up to 8 memory segments is included, as well as a wake-up interrupt controller handling interrupts triggered while the cpu is asleep. the efm32 implementation of the cortex-m3 is described in detail in efm32g cortex-m3 reference manual . 2.1.2 debug interface (dbg) this device includes hardware debug support through a 2-pin serial-wire debug interface. in addition there is also a 1-wire serial wire viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 memory system controller (msc) the memory system controller (msc) is the program memory unit of the efm32g microcontroller. the flash memory is readable and writable from both the cortex-m3 and dma . the flash memory is divided
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 4 www.silabs.com into two blocks; the main block and the information block. program code is normally written to the main block. additionally, the information block is available for special user data and flash lock bits. there is also a read-only page in the information block containing system and device calibration data. read and write operations are supported in the energy modes em0 and em1. 2.1.4 direct memory access controller (dma) the direct memory access (dma) controller performs memory operations independently of the cpu. this has the benefit of reducing the energy consumption and the workload of the cpu, and enables the system to stay in low energy modes when moving for instance data from the usart to ram or from the external bus interface to a pwm-generating timer. the dma controller uses the pl230 dma controller licensed from arm. 2.1.5 reset management unit (rmu) the rmu is responsible for handling the reset functionality of the efm32g. 2.1.6 energy management unit (emu) the energy management unit (emu) manage all the low energy modes (em) in efm32g microcon- trollers. each energy mode manages if the cpu and the various peripherals are available. the emu can also be used to turn off the power to unused sram blocks. 2.1.7 clock management unit (cmu) the clock management unit (cmu) is responsible for controlling the oscillators and clocks on-board the efm32g. the cmu provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. the high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 watchdog (wdog) the purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli- cation reliability. the failure may e.g. be caused by an external event, such as an esd pulse, or by a software failure. 2.1.9 peripheral reflex system (prs) the peripheral reflex system (prs) system is a network which lets the different peripheral module communicate directly with each other without involving the cpu. peripheral modules which send out reflex signals are called producers. the prs routes these reflex signals to consumer peripherals which apply actions depending on the data received. the format for the reflex signals is not given, but edge triggers and other functionality can be applied by the prs. 2.1.10 inter-integrated circuit interface (i2c) the i 2 c module provides an interface between the mcu and a serial i 2 c-bus. it is capable of acting as both a master and a slave, and supports multi-master buses. both standard-mode, fast-mode and fast- mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 mbit/s. slave arbitration and timeouts are also provided to allow implementation of an smbus compliant system. the interface provided to software by the i 2 c module, allows both fine-grained control of the transmission process and close to automatic transfers. automatic recognition of slave addresses is provided in all energy modes.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 5 www.silabs.com 2.1.11 universal synchronous/asynchronous receiver/transmitter (us- art) the universal synchronous asynchronous serial receiver and transmitter (usart) is a very flexible serial i/o module. it supports full duplex asynchronous uart communication as well as rs-485, spi, microwire and 3-wire. it can also interface with iso7816 smartcards, and irda devices. 2.1.12 pre-programmed uart bootloader the bootloader presented in application note an0003 is pre-programmed in the device at factory. auto- baud and destructive write are supported. the autobaud feature, interface and commands are described further in the application note. 2.1.13 low energy universal asynchronous receiver/transmitter (leuart) the unique leuart tm , the low energy uart, is a uart that allows two-way uart communication on a strict power budget. only a 32.768 khz clock is needed to allow uart communication up to 9600 baud/ s. the leuart includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 timer/counter (timer) the 16-bit general purpose timer has 3 compare/capture channels for input capture and compare/pulse- width modulation (pwm) output. timer0 also includes a dead-time insertion module suitable for motor control applications. 2.1.15 real time counter (rtc) the real time counter (rtc) contains a 24-bit counter and is clocked either by a 32.768 khz crystal oscillator, or a 32.768 khz rc oscillator. in addition to energy modes em0 and em1, the rtc is also available in em2. this makes it ideal for keeping track of time since the rtc is enabled in em2 where most of the device is powered down. 2.1.16 low energy timer (letimer) the unique letimer tm , the low energy timer, is a 16-bit timer that is available in energy mode em2 in addition to em1 and em0. because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. the letimer can be used to output a variety of waveforms with minimal software intervention. it is also connected to the real time counter (rtc), and can be configured to start counting on compare matches from the rtc. 2.1.17 pulse counter (pcnt) the pulse counter (pcnt) can be used for counting pulses on a single input or to decode quadrature encoded inputs. it runs off either the internal lfaclk or the pcntn_s0in pin as external clock source. the module may operate in energy mode em0 ? em3. 2.1.18 analog comparator (acmp) the analog comparator is used to compare the voltage of two analog inputs, with a digital output indi- cating which input voltage is higher. inputs can either be one of the selectable internal references or from external pins. response time and thereby also the current consumption can be configured by altering the current supply to the comparator.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 6 www.silabs.com 2.1.19 voltage comparator (vcmp) the voltage supply comparator is used to monitor the supply voltage from software. an interrupt can be generated when the supply falls below or rises above a programmable threshold. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.20 analog to digital converter (adc) the adc is a successive approximation register (sar) architecture, with a resolution of up to 12 bits at up to one million samples per second. the integrated input mux can select inputs from 8 external pins and 6 internal signals. 2.1.21 digital to analog converter (dac) the digital to analog converter (dac) can convert a digital value to an analog output voltage. the dac is fully differential rail-to-rail, with 12-bit resolution. it has two single ended output buffers which can be combined into one differential output. the dac may be used for a number of different applications such as sensor interfaces or sound output. 2.1.22 advanced encryption standard accelerator (aes) the aes accelerator performs aes encryption and decryption with 128-bit or 256-bit keys . encrypting or decrypting one 128-bit data block takes 52 hfcoreclk cycles with 128-bit keys and 75 hfcoreclk cycles with 256-bit keys . the aes module is an ahb slave which enables efficient access to the data and key registers. all write accesses to the aes module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.23 general purpose input/output (gpio) in the EFM32G840, there are 56 general purpose input/output (gpio) pins, which are divided into ports with up to 16 pins each. these pins can individually be configured as either an output or input. more advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. the gpio pins can also be overridden by peripheral pin connections, like timer pwm outputs or usart communication, which can be routed to several locations on the device. the gpio supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. also, the input value of a pin can be routed through the peripheral reflex system to other peripherals. 2.1.24 liquid crystal display driver (lcd) the lcd driver is capable of driving a segmented lcd display with up to 4x24 segments. a voltage boost function enables it to provide the lcd display with higher voltage than the supply voltage for the device. in addition, an animation feature can run custom animations on the lcd display without any cpu intervention. the lcd driver can also remain active even in energy mode 2 and provides a frame counter interrupt that can wake-up the device on a regular basis for updating data. 2.2 configuration summary the features of the EFM32G840 is a subset of the feature set described in the efm32g reference manual. table 2.1 (p. 6 ) describes device specific implementation of the features. table 2.1. configuration summary module configuration pin connections cortex-m3 full configuration na
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 7 www.silabs.com module configuration pin connections dbg full configuration dbg_swclk, dbg_swdio, dbg_swo msc full configuration na dma full configuration na rmu full configuration na emu full configuration na cmu full configuration cmu_out0, cmu_out1 wdog full configuration na prs full configuration na i2c0 full configuration i2c0_sda, i2c0_scl usart0 full configuration with irda us0_tx, us0_rx. us0_clk, us0_cs usart1 full configuration us1_tx, us1_rx, us1_clk, us1_cs usart2 full configuration us2_tx, us2_rx, us2_clk, us2_cs leuart0 full configuration leu0_tx, leu0_rx leuart1 full configuration leu1_tx, leu1_rx timer0 full configuration with dti tim0_cc[2:0] , tim0_cdti[2:0] timer1 full configuration tim1_cc[2:0] timer2 full configuration tim2_cc[2:0] rtc full configuration na letimer0 full configuration let0_o[1:0] pcnt0 full configuration, 8-bit count register pcnt0_s[1:0] pcnt1 full configuration, 8-bit count register pcnt1_s[1:0] pcnt2 full configuration, 8-bit count register pcnt2_s[1:0] acmp0 full configuration acmp0_ch[7:4], acmp0_o acmp1 full configuration acmp1_ch[7:4], acmp1_o vcmp full configuration na adc0 full configuration adc0_ch[7:0] dac0 full configuration dac0_out[1:0] aes full configuration na gpio 56 pins available pins are shown in table 4.3 (p. 54 ) lcd full configuration lcd_seg[23:0], lcd_com[3:0], lcd_bcap_p, lcd_bcap_n, lcd_bext 2.3 memory map the EFM32G840 memory map is shown in figure 2.2 (p. 8 ) , with ram and flash sizes for the largest memory configuration.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 8 www.silabs.com figure 2.2. EFM32G840 memory map with largest ram and flash sizes
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 9 www.silabs.com 3 electrical characteristics 3.1 test conditions 3.1.1 typical values the typical data are based on t amb =25c and v dd =3.0 v, as defined in table 3.2 (p. 9 ) , by simu- lation and/or technology characterisation unless otherwise specified. 3.1.2 minimum and maximum values the minimum and maximum values represent the worst conditions of ambient temperature, supply volt- age and frequencies, as defined in table 3.2 (p. 9 ) , by simulation and/or technology characterisa- tion unless otherwise specified. 3.2 absolute maximum ratings the absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. stress beyond the limits specified in table 3.1 (p. 9 ) may affect the device reliability or cause permanent damage to the device. functional operating conditions are given in table 3.2 (p. 9 ) . table 3.1. absolute maximum ratings symbol parameter condition min typ max unit t stg storage tempera- ture range -40 150 1 c t s maximum soldering temperature latest ipc/jedec j-std-020 standard 260 c v ddmax external main sup- ply voltage 0 3.8 v v iopin voltage on any i/o pin -0.3 v dd +0.3 v 1 based on programmed devices tested for 10000 hours at 150c. storage temperature affects retention of preprogrammed cal- ibration values stored in flash. please refer to the flash section in the electrical characteristics for information on flash data re- tention for different temperatures. 3.3 general operating conditions 3.3.1 general operating conditions table 3.2. general operating conditions symbol parameter min typ max unit t amb ambient temperature range -40 85 c v ddop operating supply voltage 1.85 3.8 v f apb internal apb clock frequency 32 mhz f ahb internal ahb clock frequency 32 mhz
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 10 www.silabs.com 3.3.2 environmental table 3.3. environmental symbol parameter condition min typ max unit v esdhbm esd (human body model hbm) t amb =25c 2000 v v esdcdm esd (charged de- vice model, cdm) t amb =25c 750 v latch-up sensitivity passed: 100 ma/1.5 v supply (max) according to jedec jesd 78 method class ii, 85c.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 11 www.silabs.com 3.4 current consumption table 3.4. current consumption symbol parameter condition min typ max unit 32 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 180 a/ mhz 28 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 181 235 a/ mhz 21 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 183 237 a/ mhz 14 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 185 243 a/ mhz 11 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 186 246 a/ mhz 6.6 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 191 257 a/ mhz i em0 em0 current. no prescaling. running prime number cal- culation code from flash. 1.2 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 220 a/ mhz 32 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 45 a/ mhz 28 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 47 62 a/ mhz 21 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 48 64 a/ mhz 14 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 50 69 a/ mhz 11 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 51 72 a/ mhz 6.6 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 56 83 a/ mhz i em1 em1 current 1.2 mhz hfrco. all peripheral clocks disabled, v dd = 3.0 v 103 a/ mhz em2 current with rtc at 1 hz, rtc prescaled to 1khz, 32.768 khz lfrco, v dd = 3.0 v, t amb =25c 0.9 a i em2 em2 current em2 current with rtc at 1 hz, rtc prescaled to 1khz, 32.768 khz lfrco, v dd = 3.0 v, t amb =85c 3.0 6.0 a v dd = 3.0 v, t amb =25c 0.59 a i em3 em3 current v dd = 3.0 v, t amb =85c 2.75 5.8 a v dd = 3.0 v, t amb =25c 0.02 a i em4 em4 current v dd = 3.0 v, t amb =85c 0.25 0.7 a
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 12 www.silabs.com 3.4.1 em0 current consumption figure 3.1. em0 current consumption while executing prime number calculation code from flash with hfrco running at 28mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v figure 3.2. em0 current consumption while executing prime number calculation code from flash with hfrco running at 21mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 3.5 3.6 3.7 3.8 3.9 4.0 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 3.5 3.6 3.7 3.8 3.9 4.0 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 13 www.silabs.com figure 3.3. em0 current consumption while executing prime number calculation code from flash with hfrco running at 14mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v figure 3.4. em0 current consumption while executing prime number calculation code from flash with hfrco running at 11mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 14 www.silabs.com figure 3.5. em0 current consumption while executing prime number calculation code from flash with hfrco running at 7mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.20 1.25 1.30 1.35 1.40 1.45 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 1.20 1.25 1.30 1.35 1.40 1.45 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v 3.4.2 em1 current consumption figure 3.6. em1 current consumption with all peripheral clocks disabled and hfrco running at 28mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.15 1.20 1.25 1.30 1.35 1.40 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 1.15 1.20 1.25 1.30 1.35 1.40 idd [m a] vdd= 2.0v vdd= 2.4v vdd= 2.8v vdd= 3.0v vdd= 3.4v vdd= 3.8v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 15 www.silabs.com figure 3.7. em1 current consumption with all peripheral clocks disabled and hfrco running at 21mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 idd [m a] vdd= 2.0v vdd= 2.4v vdd= 2.8v vdd= 3.0v vdd= 3.4v vdd= 3.8v figure 3.8. em1 current consumption with all peripheral clocks disabled and hfrco running at 14mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.64 0.66 0.68 0.70 0.72 0.74 0.76 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.64 0.66 0.68 0.70 0.72 0.74 0.76 idd [m a] vdd= 2.0v vdd= 2.4v vdd= 2.8v vdd= 3.0v vdd= 3.4v vdd= 3.8v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 16 www.silabs.com figure 3.9. em1 current consumption with all peripheral clocks disabled and hfrco running at 11mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.52 0.54 0.56 0.58 0.60 0.62 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.52 0.54 0.56 0.58 0.60 0.62 idd [m a] vdd= 2.0v vdd= 2.4v vdd= 2.8v vdd= 3.0v vdd= 3.4v vdd= 3.8v figure 3.10. em1 current consumption with all peripheral clocks disabled and hfrco running at 7mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 idd [m a] vdd= 2.0v vdd= 2.4v vdd= 2.8v vdd= 3.0v vdd= 3.4v vdd= 3.8v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 17 www.silabs.com 3.4.3 em2 current consumption figure 3.11. em2 current consumption. rtc prescaled to 1khz, 32.768 khz lfrco. 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 idd [ua] vdd= 1.8v vdd= 2.2v vdd= 2.6v vdd= 3.0v vdd= 3.4v vdd= 3.8v 3.4.4 em3 current consumption figure 3.12. em3 current consumption. 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 idd [ua] vdd= 1.8v vdd= 2.2v vdd= 2.6v vdd= 3.0v vdd= 3.4v vdd= 3.8v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 18 www.silabs.com 3.4.5 em4 current consumption figure 3.13. em4 current consumption. 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 idd [ua] vdd= 1.8v vdd= 2.2v vdd= 2.6v vdd= 3.0v vdd= 3.4v vdd= 3.8v 3.5 transition between energy modes table 3.5. energy modes transitions symbol parameter min typ max unit t em10 transition time from em1 to em0 0 1 hf core clk cycles t em20 transition time from em2 to em0 2 s t em30 transition time from em3 to em0 2 s t em40 transition time from em4 to em0 163 s 1 core wakeup time only. 3.6 power management the efm32g requires the avdd_x, vdd_dreg and iovdd_x pins to be connected together (with optional filter) at the pcb level. for practical schematic recommendations, please see the application note, "an0002 efm32 hardware design considerations".
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 19 www.silabs.com table 3.6. power management symbol parameter condition min typ max unit v bodextthr- bod threshold on falling external sup- ply voltage 1.82 1.85 v v bodintthr- bod threshold on falling internally reg- ulated supply volt- age 1.62 1.68 v v bodextthr+ bod threshold on rising external sup- ply voltage 1.85 v v porthr+ power-on reset (por) threshold on rising external sup- ply voltage 1.98 v t resetdly delay from reset is released until program execution starts applies to power-on reset, brown-out reset and pin reset. 163 s t reset negative pulse length to ensure complete reset of device 50 ns c decouple voltage regulator decoupling capaci- tor. x5r capacitor recommended. apply between decouple pin and ground 1 f 3.7 flash table 3.7. flash symbol parameter condition min typ max unit ec flash flash erase cycles before failure 20000 cycles t amb <150c 10000 h t amb <85c 10 years ret flash flash data retention t amb <70c 20 years t w_prog word (32-bit) pro- gramming time 20 s t p_erase page erase time 20 20.4 20.8 ms t d_erase device erase time 40 40.8 41.6 ms i erase erase current 7 1 ma i write write current 7 1 ma v flash supply voltage dur- ing flash erase and write 1.8 3.8 v 1 measured at 25c
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 20 www.silabs.com 3.8 general purpose input output table 3.8. gpio symbol parameter condition min typ max unit v ioil input low voltage 0.3v dd v v ioih input high voltage 0.7v dd v sourcing 6 ma, v dd =1.85 v, gpio_px_ctrl drivemode = standard 0.75v dd v sourcing 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.95v dd v sourcing 20 ma, v dd =1.85 v, gpio_px_ctrl drivemode = high 0.7v dd v v iooh output high voltage sourcing 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.9v dd v sinking 6 ma, v dd =1.85 v, gpio_px_ctrl drivemode = standard 0.25v dd v sinking 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.05v dd v sinking 20 ma, v dd =1.85 v, gpio_px_ctrl drivemode = high 0.3v dd v v iool output low voltage sinking 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.1v dd v i ioleak input leakage cur- rent high impedance io connected to ground or v dd +/-25 na r pu i/o pin pull-up resis- tor 40 kohm r pd i/o pin pull-down re- sistor 40 kohm r ioesd internal esd series resistor 200 ohm t ioglitch pulse width of puls- es to be removed by the glitch sup- pression filter 10 50 ns 0.5 ma drive strength and load capacitance c l =12.5-25pf. 20+0.1c l 250 ns t ioof output fall time 2ma drive strength and load capacitance c l =350-600pf 20+0.1c l 250 ns v iohyst i/o pin hysteresis (v iothr+ - v iothr- ) v dd = 1.85 - 3.8 v 0.1v dd v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 21 www.silabs.com figure 3.14. typical low-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0.00 0.05 0.10 0.15 0.20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 1 2 3 4 5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 45 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 22 www.silabs.com figure 3.15. typical high-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?0.20 ?0.15 ?0.10 ?0.05 0.00 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?2.5 ?2.0 ?1.5 ?1.0 ?0.5 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?20 ?15 ?10 ?5 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 23 www.silabs.com figure 3.16. typical low-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 2 4 6 8 10 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 24 www.silabs.com figure 3.17. typical high-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 25 www.silabs.com figure 3.18. typical low-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 2 4 6 8 10 12 14 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 26 www.silabs.com figure 3.19. typical high-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?0.8 ?0.7 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 27 www.silabs.com 3.9 oscillators 3.9.1 lfxo table 3.9. lfxo symbol parameter condition min typ max unit f lfxo supported nominal crystal frequency 32.768 khz esr lfxo supported crystal equivalent series re- sistance (esr) 30 120 kohm c lfxol supported crystal external load range x 1 25 pf dc lfxo duty cycle 48 50 53.5 % i lfxo current consump- tion for core and buffer after startup. esr=30 kohm, c l =10 pf, lfxoboost in cmu_ctrl is 1 190 na t lfxo start- up time. esr=30 kohm, c l =10 pf, 40% - 60% duty cycle has been reached, lfxoboost in cmu_ctrl is 1 400 ms 1 see minimum load capacitance (c lfxol ) requirement for safe crystal startup in energyaware designer in simplicity studio for safe startup of a given crystal, the energyaware designer in simplicity studio contains a tool to help users configure both load capacitance and software settings for using the lfxo. for details regarding the crystal configuration, the reader is referred to application note "an0016 efm32 oscillator design consideration".
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 28 www.silabs.com 3.9.2 hfxo table 3.10. hfxo symbol parameter condition min typ max unit f hfxo supported nominal crystal frequency 4 32 mhz crystal frequency 32 mhz 30 60 ohm esr hfxo supported crystal equivalent series re- sistance (esr) crystal frequency 4 mhz 400 1500 ohm g mhfxo the transconduc- tance of the hfxo input transistor at crystal startup hfxoboost in cmu_ctrl equals 0b11 20 ms c hfxol supported crystal external load range 5 25 pf dc hfxo duty cycle 46 50 54 % 4 mhz: esr=400 ohm, c l =20 pf, hfxoboost in cmu_ctrl equals 0b11 85 a i hfxo current consump- tion for hfxo after startup 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 165 a startup time 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 400 s t hfxo pulse width re- moved by glitch de- tector 1 4 ns 3.9.3 lfrco table 3.11. lfrco symbol parameter condition min typ max unit f lfrco oscillation frequen- cy , v dd = 3.0 v, t amb =25c 32.768 khz t lfrco startup time not in- cluding software calibration 150 s i lfrco current consump- tion 190 na tc lfrco temperature coeffi- cient 0.02 %/c vc lfrco supply voltage co- efficient 15 %/v tunestep l- frco frequency step for lsb change in tuning value 1.5 %
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 29 www.silabs.com figure 3.20. calibrated lfrco frequency vs temperature and supply voltage 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 30 32 34 36 38 40 42 frequency [khz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 30 32 34 36 38 40 42 frequency [khz] 1.8 v 3 v 3.8 v 3.9.4 hfrco table 3.12. hfrco symbol parameter condition min typ max unit 28 mhz frequency band 28 mhz 21 mhz frequency band 21 mhz 14 mhz frequency band 14 mhz 11 mhz frequency band 11 mhz 7 mhz frequency band 6.6 1 mhz f hfrco oscillation frequen- cy, v dd = 3.0 v, t amb =25c 1 mhz frequency band 1.2 2 mhz t hfrco_settling settling time after start-up f hfrco = 14 mhz 0.6 cycles f hfrco = 28 mhz 106 a f hfrco = 21 mhz 93 a f hfrco = 14 mhz 77 a f hfrco = 11 mhz 72 a f hfrco = 6.6 mhz 63 a i hfrco current consump- tion f hfrco = 1.2 mhz 22 a dc hfrco duty cycle f hfrco = 14 mhz 48.5 50 51 % f hfrco = 28 mhz 0.005 3 %/c f hfrco = 21 mhz 0.01 3 %/c f hfrco = 14 mhz 0.01 3 %/c f hfrco = 11 mhz 0.02 3 %/c f hfrco = 6.6 mhz 0.02 3 %/c tc hfrco temperature coeffi- cient, v dd = 3.0 v f hfrco = 1.2 mhz 0.06 3 %/c
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 30 www.silabs.com symbol parameter condition min typ max unit f hfrco = 28 mhz 0.52 4 %/v f hfrco = 21 mhz 0.25 4 %/v f hfrco = 14 mhz 0.32 4 %/v f hfrco = 11 mhz 0.28 4 %/v f hfrco = 6.6 mhz 0.3 4 %/v vc hfrco supply volt- age coefficient, t amb =25c f hfrco = 1.2 mhz 15 4 %/v tunestep h- frco frequency step for lsb change in tuning value 0.3 % 1 7 mhz for devices with prod. rev. < 19. 2 1 mhz for devices with prod. rev. < 19. 3 calculated using (max(-40c - 85c) - min(-40c - 85c)) / f_ hfrco / (85c - (-40c)) 4 calculated using (max(1.8v - 3.8v) - min(1.8v - 3.8v)) / f_ hfrco / (3.8v - 1.8v)) figure 3.21. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 10.80 10.85 10.90 10.95 11.00 11.05 11.10 11.15 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 10.80 10.85 10.90 10.95 11.00 11.05 11.10 11.15 11.20 frequency [mhz] 1.8 v 3 v 3.8 v figure 3.22. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 13.85 13.90 13.95 14.00 14.05 14.10 14.15 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 13.85 13.90 13.95 14.00 14.05 14.10 14.15 frequency [mhz] 1.8 v 3 v 3.8 v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 31 www.silabs.com figure 3.23. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 20.6 20.7 20.8 20.9 21.0 21.1 21.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 20.6 20.7 20.8 20.9 21.0 21.1 21.2 frequency [mhz] 1.8 v 3 v 3.8 v figure 3.24. calibrated hfrco 28 mhz band frequency vs supply voltage and temperature 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 27.4 27.5 27.6 27.7 27.8 27.9 28.0 28.1 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 27.4 27.5 27.6 27.7 27.8 27.9 28.0 28.1 frequency [mhz] 1.8 v 3 v 3.8 v 3.9.5 ulfrco table 3.13. ulfrco symbol parameter condition min typ max unit f ulfrco oscillation frequen- cy 25c, 3v 0.8 1.5 khz tc ulfrco temperature coeffi- cient 0.05 %/c vc ulfrco supply voltage co- efficient -18.2 %/v 3.10 analog digital converter (adc) table 3.14. adc symbol parameter condition min typ max unit v adcin input voltage range single ended 0 v ref v
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 32 www.silabs.com symbol parameter condition min typ max unit differential -v ref /2 v ref /2 v v adcrefin input range of exter- nal reference volt- age, single ended and differential 1.25 v dd v v adcrefin_ch7 input range of ex- ternal negative ref- erence voltage on channel 7 see v adcrefin 0 v dd - 1.1 v v adcrefin_ch6 input range of ex- ternal positive ref- erence voltage on channel 6 see v adcrefin 0.625 v dd v v adccmin common mode in- put range 0 v dd v i adcin input current 2pf sampling capacitors <100 na cmrr adc analog input com- mon mode rejection ratio 65 db 1 msamples/s, 12 bit, external reference 351 a 1 msamples/s, 12 bit, internal reference 411 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b00, adc_clk running at 13mhz 67 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b01, adc_clk running at 13mhz 63 a i adc average active cur- rent 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b10, adc_clk running at 13mhz 64 a c adcin input capacitance 2 pf r adcin input on resistance 1 mohm r adcfilt input rc filter resis- tance 10 kohm c adcfilt input rc filter/de- coupling capaci- tance 250 ff f adcclk adc clock fre- quency 13 mhz t adcconv conversion time 6 bit 7 adc- clk cycles
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 33 www.silabs.com symbol parameter condition min typ max unit 8 bit 11 adc- clk cycles 12 bit 13 adc- clk cycles t adcacq acquisition time programmable 1 256 adc- clk cycles t adcacqvdd3 required acquisi- tion time for vdd/3 reference 2 s startup time of ref- erence generator and adc core in normal mode 5 s t adcstart startup time of ref- erence generator and adc core in keepadcwarm mode 1 s 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 59 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 63 db 1 msamples/s, 12 bit, single ended, v dd reference 65 db 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 65 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 67 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 69 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 62 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 63 db 200 ksamples/s, 12 bit, single ended, v dd reference 67 db 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db snr adc signal to noise ra- tio (snr) 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 34 www.silabs.com symbol parameter condition min typ max unit 200 ksamples/s, 12 bit, differ- ential, v dd reference 69 db 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 70 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 58 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 62 db 1 msamples/s, 12 bit, single ended, v dd reference 64 db 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 64 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 66 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 68 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 61 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 65 db 200 ksamples/s, 12 bit, single ended, v dd reference 66 db 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 68 db sinad adc signal-to-noise and distortion-ratio (sinad) 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 69 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 64 dbc 1 msamples/s, 12 bit, single ended, internal 2.5v reference 76 dbc 1 msamples/s, 12 bit, single ended, v dd reference 73 dbc 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 66 dbc sfdr adc spurious-free dy- namic range (sf- dr) 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 77 dbc
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 35 www.silabs.com symbol parameter condition min typ max unit 1 msamples/s, 12 bit, differen- tial, v dd reference 76 dbc 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 75 dbc 1 msamples/s, 12 bit, differen- tial, 5v reference 69 dbc 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 75 dbc 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 75 dbc 200 ksamples/s, 12 bit, single ended, v dd reference 76 dbc 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 5v reference 78 dbc 200 ksamples/s, 12 bit, differ- ential, v dd reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 79 dbc after calibration, single ended 0.3 mv v adcoffset offset voltage after calibration, differential 0.3 mv -1.92 mv/c tgrad adcth thermometer out- put gradient -6.3 adc codes/ c dnl adc differential non-lin- earity (dnl) 0.7 lsb inl adc integral non-linear- ity (inl), end point method 1.2 lsb mc adc no missing codes 11.999 1 12 bits 1 on the average every adc will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. there will be no missing code around 2048, and in spite of the missing code the adc will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. around the one code that is missing, the neighbour codes will look wider in the dnl plot. the spectra will show spurs on the level of -78dbc for a full scale input for chips that have the missing code issue. the integral non-linearity (inl) and differential non-linearity parameters are explained in figure 3.25 (p. 36 ) and figure 3.26 (p. 36 ) , respectively.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 36 www.silabs.com figure 3.25. integral non-linearity (inl) ideal transfer curve digital ouput code analog input inl= | [(v d - v ss )/ v lsbideal ] - d| where 0 < d < 2 n - 1 0 1 2 3 4092 4093 4094 4095 v offset actual adc tranfer function before offset and gain correction actual adc tranfer function after offset and gain correction inl error ( end point inl) figure 3.26. differential non-linearity (dnl) ideal transfer curve digital ouput code analog input dnl= | [(v d + 1 - v d )/ v lsbideal ] - 1| where 0 < d < 2 n - 2 0 1 2 3 4092 4093 4094 4095 actual transfer function with one m issing code . 4 5 full scale range 0.5 lsb ideal code center ideal 50% transition point ideal spacing between two adjacent codes v lsbideal = 1 lsb code width = 2 lsb dnl = 1 lsb example: adjacent input value v d + 1 corrresponds to digital output code d + 1 example: input value v d corrresponds to digital output code d
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 37 www.silabs.com 3.10.1 typical performance figure 3.27. adc frequency spectrum, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 38 www.silabs.com figure 3.28. adc integral linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 39 www.silabs.com figure 3.29. adc differential linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 40 www.silabs.com figure 3.30. adc absolute offset, common mode = vdd /2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd (v) ?4 ?3 ?2 ?1 0 1 2 3 4 5 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs supply voltage, temp = 25c ?40 ?15 5 25 45 65 85 tem p (c) ?1.0 ?0.5 0.0 0.5 1.0 1.5 2.0 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs temperature, vdd = 3v figure 3.31. adc dynamic performance vs temperature for all adc references, vdd = 3v ?40 ?15 5 25 45 65 85 tem perature [c] 63 64 65 66 67 68 69 70 71 snr [db] 1v25 2v5 vdd 5vdiff 2xvddvss signal to noise ratio (snr) ?40 ?15 5 25 45 65 85 tem perature [c] 78.0 78.2 78.4 78.6 78.8 79.0 79.2 79.4 sfdr [db] 1v25 2v5 vdd 5vdiff 2xvddvss spurious-free dynamic range (sfdr) 3.11 digital analog converter (dac) table 3.15. dac symbol parameter condition min typ max unit vdd voltage reference, single ended 0 v dd v v dacout output voltage range vdd voltage reference, differ- ential -v dd v dd v v daccm output common mode voltage range 0 v dd v 500 ksamples/s, 12bit 400 a 100 ksamples/s, 12 bit 200 a i dac active current in- cluding references for 2 channels 1 ksamples/s 12 bit 38 a
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 41 www.silabs.com symbol parameter condition min typ max unit sr dac sample rate 500 ksam- ples/s continuous mode 1000 khz sample/hold mode 250 khz f dac dac clock frequen- cy sample/off mode 250 khz cyc dacconv clock cyckles per conversion 2 t dacconv conversion time 2 s t dacsettle settling time 5 s 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 58 db 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 59 db 500 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 58 db 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 58 db snr dac signal to noise ra- tio (snr) 500 ksamples/s, 12 bit, differ- ential, v dd reference 59 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 57 db 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 54 db 500 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 56 db 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 53 db sndr dac signal to noise- pulse distortion ra- tio (sndr) 500 ksamples/s, 12 bit, differ- ential, v dd reference 55 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 62 dbc 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 56 dbc 500 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 61 dbc 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 55 dbc sfdr dac spurious-free dynamic range(sfdr) 500 ksamples/s, 12 bit, differ- ential, v dd reference 60 dbc after calibration, single ended 2 mv v dacoffset offset voltage after calibration, differential 2 mv v dacshmdrift sample-hold mode voltage drift 540 v/ms
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 42 www.silabs.com symbol parameter condition min typ max unit dnl dac differential non-lin- earity 1 lsb inl dac integral non-lineari- ty 5 lsb mc dac no missing codes 12 bits 3.12 analog comparator (acmp) table 3.16. acmp symbol parameter condition min typ max unit v acmpin input voltage range 0 v dd v v acmpcm acmp common mode voltage range 0 v dd v biasprog=0b0000, full- bias=0 and halfbias=1 in acmpn_ctrl register 55 na biasprog=0b1111, full- bias=0 and halfbias=0 in acmpn_ctrl register 2.82 a i acmp active current biasprog=0b1111, full- bias=1 and halfbias=0 in acmpn_ctrl register 195 a internal voltage reference off. using external voltage refer- ence 0 a internal voltage reference, lpref=1 50 na i acmpref current consump- tion of internal volt- age reference internal voltage reference, lpref=0 6 a single ended 10 mv v acmpoffset offset voltage differential 10 mv v acmphyst acmp hysteresis programmable 17 mv csressel=0b00 in acmpn_inputsel 39 kohm csressel=0b01 in acmpn_inputsel 71 kohm csressel=0b10 in acmpn_inputsel 104 kohm r csres capacitive sense internal resistance csressel=0b11 in acmpn_inputsel 136 kohm t acmpstart startup time 10 s the total acmp current is the sum of the contributions from the acmp and its internal voltage reference as given in equation 3.1 (p. 42 ) . i acmpref is zero if an external voltage reference is used. total acmp active current i acmptotal = i acmp + i acmpref (3.1)
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 43 www.silabs.com figure 3.32. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 0 4 8 12 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 current [ua] current consumption, hystsel = 4 0 2 4 6 8 10 12 14 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 response tim e [us] hystsel= 0.0 hystsel= 2.0 hystsel= 4.0 hystsel= 6.0 response time 0 1 2 3 4 5 6 7 acmp_ctrl_hystsel 0 20 40 60 80 100 hysteresis [m v] biasprog= 0.0 biasprog= 4.0 biasprog= 8.0 biasprog= 12.0 hysteresis
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 44 www.silabs.com 3.13 voltage comparator (vcmp) table 3.17. vcmp symbol parameter condition min typ max unit v vcmpin input voltage range v dd v v vcmpcm vcmp common mode voltage range v dd v biasprog=0b0000 and halfbias=1 in vcmpn_ctrl register 0.1 a i vcmp active current biasprog=0b1111 and halfbias=0 in vcmpn_ctrl register. lpref=0. 14.7 a t vcmpref startup time refer- ence generator normal 10 s single ended 10 mv v vcmpoffset offset voltage differential 10 mv v vcmphyst vcmp hysteresis 17 mv t vcmpstart startup time 10 s the v dd trigger level can be configured by setting the triglevel field of the vcmp_ctrl register in accordance with the following equation: vcmp trigger level as a function of level setting v dd trigger level =1.667v+0.034 triglevel (3.2)
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 45 www.silabs.com 3.14 lcd table 3.18. lcd symbol parameter condition min typ max unit f lcdfr frame rate 30 200 hz num seg number of seg- ments supported 440 seg v lcd lcd supply voltage range internal boost circuit enabled 2.0 3.8 v display disconnected, stat- ic mode, framerate 32 hz, all segments on. 250 na i lcd steady state current consumption. display disconnected, quadru- plex mode, framerate 32 hz, all segments on, bias mode to onethird in lcd_dispctrl register. 550 na internal voltage boost off 0 a i lcdboost steady state cur- rent contribution of internal boost. internal voltage boost on, boosting from 2.2 v to 3.0 v. 8.4 a vblev of lcd_dispctrl register to level0 3.0 v vblev of lcd_dispctrl register to level1 3.08 v vblev of lcd_dispctrl register to level2 3.17 v vblev of lcd_dispctrl register to level3 3.26 v vblev of lcd_dispctrl register to level4 3.34 v vblev of lcd_dispctrl register to level5 3.43 v vblev of lcd_dispctrl register to level6 3.52 v v boost boost voltage vblev of lcd_dispctrl register to level7 3.6 v the total lcd current is given by equation 3.3 (p. 45 ) . i lcdboost is zero if internal boost is off. total lcd current based on operational mode and internal boost i lcdtotal = i lcd + i lcdboost (3.3)
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 46 www.silabs.com 3.15 i2c table 3.19. i2c standard-mode (sm) symbol parameter min typ max unit f scl scl clock frequency 0 100 1 khz t low scl clock low time 4.7 s t high scl clock high time 4.0 s t su,dat sda set-up time 250 ns t hd,dat sda hold time 8 3450 2 , 3 ns t su,sta repeated start condition set-up time 4.7 s t hd,sta (repeated) start condition hold time 4.0 s t su,sto stop condition set-up time 4.0 s t buf bus free time between a stop and start condition 4.7 s 1 for the minimum hfperclk frequency required in standard-mode, see the i2c chapter in the efm32g reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((3450*10 -9 [s] * f hfperclk [hz]) - 4). table 3.20. i2c fast-mode (fm) symbol parameter min typ max unit f scl scl clock frequency 0 400 1 khz t low scl clock low time 1.3 s t high scl clock high time 0.6 s t su,dat sda set-up time 100 ns t hd,dat sda hold time 8 900 2 , 3 ns t su,sta repeated start condition set-up time 0.6 s t hd,sta (repeated) start condition hold time 0.6 s t su,sto stop condition set-up time 0.6 s t buf bus free time between a stop and start condition 1.3 s 1 for the minimum hfperclk frequency required in fast-mode, see the i2c chapter in the efm32g reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((900*10 -9 [s] * f hfperclk [hz]) - 4).
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 47 www.silabs.com table 3.21. i2c fast-mode plus (fm+) symbol parameter min typ max unit f scl scl clock frequency 0 1000 1 khz t low scl clock low time 0.5 s t high scl clock high time 0.26 s t su,dat sda set-up time 50 ns t hd,dat sda hold time 8 ns t su,sta repeated start condition set-up time 0.26 s t hd,sta (repeated) start condition hold time 0.26 s t su,sto stop condition set-up time 0.26 s t buf bus free time between a stop and start condition 0.5 s 1 for the minimum hfperclk frequency required in fast-mode plus, see the i2c chapter in the efm32g reference manual. 3.16 digital peripherals table 3.22. digital peripherals symbol parameter condition min typ max unit i usart usart current usart idle current, clock en- abled 7.5 a/ mhz i uart uart current uart idle current, clock en- abled 5.63 a/ mhz i leuart leuart current leuart idle current, clock en- abled 150 na i i2c i2c current i2c idle current, clock enabled 6.25 a/ mhz i timer timer current timer_0 idle current, clock enabled 8.75 a/ mhz i letimer letimer current letimer idle current, clock enabled 150 na i pcnt pcnt current pcnt idle current, clock en- abled 100 na i rtc rtc current rtc idle current, clock enabled 100 na i lcd lcd current lcd idle current, clock enabled 100 na i aes aes current aes idle current, clock enabled 2.5 a/ mhz i gpio gpio current gpio idle current, clock en- abled 5.31 a/ mhz i prs prs current prs idle current 2,81 a/ mhz i dma dma current clock enable 8.12 a/ mhz
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 48 www.silabs.com 4 pinout and package note please refer to the application note "an0002 efm32 hardware design considerations" for guidelines on designing printed circuit boards (pcb's) for the EFM32G840. 4.1 pinout the EFM32G840 pinout is shown in figure 4.1 (p. 48 ) and table 4.1 (p. 48 ) . alternate locations are denoted by "#" followed by the location number (multiple locations on the same pin are split with "/"). alternate locations can be configured in the location bitfield in the *_route register in the module in question. figure 4.1. EFM32G840 pinout (top view, not to scale) table 4.1. device pinout qfn64 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 0 vss ground 1 pa0 lcd_seg13 tim0_cc0 #0/1 i2c0_sda #0 2 pa1 lcd_seg14 tim0_cc1 #0/1 i2c0_scl #0 cmu_clk1 #0
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 49 www.silabs.com qfn64 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 3 pa2 lcd_seg15 tim0_cc2 #0/1 cmu_clk0 #0 4 pa3 lcd_seg16 tim0_cdti0 #0 5 pa4 lcd_seg17 tim0_cdti1 #0 6 pa5 lcd_seg18 tim0_cdti2 #0 leu1_tx #1 7 pa6 lcd_seg19 leu1_rx #1 8 iovdd_0 digital io power supply 0. 9 pb3 lcd_seg20 pcnt1_s0in #1 us2_tx #1 10 pb4 lcd_seg21 pcnt1_s1in #1 us2_rx #1 11 pb5 lcd_seg22 us2_clk #1 12 pb6 lcd_seg23 us2_cs #1 13 pc4 acmp0_ch4 letim0_out0 #3 pcnt1_s0in #0 us2_clk #0 14 pc5 acmp0_ch5 letim0_out1 #3 pcnt1_s1in #0 us2_cs #0 15 pb7 lfxtal_p us1_clk #0 16 pb8 lfxtal_n us1_cs #0 17 pa12 lcd_bcap_p tim2_cc0 #1 18 pa13 lcd_bcap_n tim2_cc1 #1 19 pa14 lcd_bext tim2_cc2 #1 20 resetn reset input, active low. to apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up en- sure that reset is released. 21 pb11 dac0_out0 letim0_out0 #1 22 pb12 dac0_out1 letim0_out1 #1 23 avdd_1 analog power supply 1. 24 pb13 hfxtal_p leu0_tx #1 25 pb14 hfxtal_n leu0_rx #1 26 iovdd_3 digital io power supply 3. 27 avdd_0 analog power supply 0. 28 pd0 adc0_ch0 pcnt2_s0in #0 us1_tx #1 29 pd1 adc0_ch1 tim0_cc0 #3 pcnt2_s1in #0 us1_rx #1 30 pd2 adc0_ch2 tim0_cc1 #3 us1_clk #1 31 pd3 adc0_ch3 tim0_cc2 #3 us1_cs #1 32 pd4 adc0_ch4 leu0_tx #0 33 pd5 adc0_ch5 leu0_rx #0 34 pd6 adc0_ch6 letim0_out0 #0 i2c0_sda #1 35 pd7 adc0_ch7 letim0_out1 #0 i2c0_scl #1 36 pd8 cmu_clk1 #1 37 pc6 acmp0_ch6 leu1_tx #0 i2c0_sda #2 38 pc7 acmp0_ch7 leu1_rx #0 i2c0_scl #2
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 50 www.silabs.com qfn64 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 39 vdd_dreg power supply for on-chip voltage regulator. 40 decouple decouple output for on-chip voltage regulator. an external capacitance of size c decouple is required at this pin. 41 pe4 lcd_com0 us0_cs #1 42 pe5 lcd_com1 us0_clk #1 43 pe6 lcd_com2 us0_rx #1 44 pe7 lcd_com3 us0_tx #1 45 pc12 acmp1_ch4 cmu_clk0 #1 46 pc13 acmp1_ch5 tim0_cdti0 #1/3 tim1_cc0 #0 pcnt0_s0in #0 47 pc14 acmp1_ch6 tim0_cdti1 #1/3 tim1_cc1 #0 pcnt0_s1in #0 48 pc15 acmp1_ch7 tim0_cdti2 #1/3 tim1_cc2 #0 dbg_swo #1 49 pf0 letim0_out0 #2 dbg_swclk #0/1 50 pf1 letim0_out1 #2 dbg_swdio #0/1 51 pf2 lcd_seg0 acmp1_o #0 dbg_swo #0 52 pf3 lcd_seg1 tim0_cdti0 #2 53 pf4 lcd_seg2 tim0_cdti1 #2 54 pf5 lcd_seg3 tim0_cdti2 #2 55 iovdd_5 digital io power supply 5. 56 pe8 lcd_seg4 pcnt2_s0in #1 57 pe9 lcd_seg5 pcnt2_s1in #1 58 pe10 lcd_seg6 tim1_cc0 #1 us0_tx #0 boot_tx 59 pe11 lcd_seg7 tim1_cc1 #1 us0_rx #0 boot_rx 60 pe12 lcd_seg8 tim1_cc2 #1 us0_clk #0 61 pe13 lcd_seg9 us0_cs #0 acmp0_o #0 62 pe14 lcd_seg10 leu0_tx #2 63 pe15 lcd_seg11 leu0_rx #2 64 pa15 lcd_seg12 4.2 alternate functionality pinout a wide selection of alternate functionality is available for multiplexing to various pins. this is shown in table 4.2 (p. 51 ) . the table shows the name of the alternate functionality in the first column, followed by columns showing the possible location bitfield settings. note some functionality, such as analog interfaces, do not have alternate settings or a loca- tion bitfield. in these cases, the pinout is shown in the column corresponding to loca- tion 0.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 51 www.silabs.com table 4.2. alternate functionality overview alternate location functionality 0 1 2 3 description acmp0_ch4 pc4 analog comparator acmp0, channel 4. acmp0_ch5 pc5 analog comparator acmp0, channel 5. acmp0_ch6 pc6 analog comparator acmp0, channel 6. acmp0_ch7 pc7 analog comparator acmp0, channel 7. acmp0_o pe13 analog comparator acmp0, digital output. acmp1_ch4 pc12 analog comparator acmp1, channel 4. acmp1_ch5 pc13 analog comparator acmp1, channel 5. acmp1_ch6 pc14 analog comparator acmp1, channel 6. acmp1_ch7 pc15 analog comparator acmp1, channel 7. acmp1_o pf2 analog comparator acmp1, digital output. adc0_ch0 pd0 analog to digital converter adc0, input channel number 0. adc0_ch1 pd1 analog to digital converter adc0, input channel number 1. adc0_ch2 pd2 analog to digital converter adc0, input channel number 2. adc0_ch3 pd3 analog to digital converter adc0, input channel number 3. adc0_ch4 pd4 analog to digital converter adc0, input channel number 4. adc0_ch5 pd5 analog to digital converter adc0, input channel number 5. adc0_ch6 pd6 analog to digital converter adc0, input channel number 6. adc0_ch7 pd7 analog to digital converter adc0, input channel number 7. boot_rx pe11 bootloader rx boot_tx pe10 bootloader tx cmu_clk0 pa2 pc12 clock management unit, clock output number 0. cmu_clk1 pa1 pd8 clock management unit, clock output number 1. dac0_out0 pb11 digital to analog converter dac0 output channel number 0. dac0_out1 pb12 digital to analog converter dac0 output channel number 1. dbg_swclk pf0 pf0 debug-interface serial wire clock input. note that this function is enabled to pin out of reset, and has a built-in pull down. dbg_swdio pf1 pf1 debug-interface serial wire data input / output. note that this function is enabled to pin out of reset, and has a built-in pull up. dbg_swo pf2 pc15 debug-interface serial wire viewer output. note that this function is not enabled after reset, and must be enabled by software to be used. hfxtal_n pb14 high frequency crystal negative pin. also used as external optional clock in- put pin. hfxtal_p pb13 high frequency crystal positive pin. i2c0_scl pa1 pd7 pc7 i2c0 serial clock line input / output. i2c0_sda pa0 pd6 pc6 i2c0 serial data input / output. lcd_bcap_n pa13 lcd voltage booster (optional), boost capacitor, negative pin. if using the lcd voltage booster, connect a 22 nf capacitor between lcd_bcap_n and lcd_bcap_p. lcd_bcap_p pa12 lcd voltage booster (optional), boost capacitor, positive pin. if using the lcd voltage booster, connect a 22 nf capacitor between lcd_bcap_n and lcd_bcap_p. lcd_bext pa14 lcd voltage booster (optional), boost output. if using the lcd voltage boost- er, connect a 1 uf capacitor between this pin and vss.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 52 www.silabs.com alternate location functionality 0 1 2 3 description an external lcd voltage may also be applied to this pin if the booster is not enabled. if avdd is used directly as the lcd supply voltage, this pin may be left un- connected or used as a gpio. lcd_com0 pe4 lcd driver common line number 0. lcd_com1 pe5 lcd driver common line number 1. lcd_com2 pe6 lcd driver common line number 2. lcd_com3 pe7 lcd driver common line number 3. lcd_seg0 pf2 lcd segment line 0. segments 0, 1, 2 and 3 are controlled by segen0. lcd_seg1 pf3 lcd segment line 1. segments 0, 1, 2 and 3 are controlled by segen0. lcd_seg2 pf4 lcd segment line 2. segments 0, 1, 2 and 3 are controlled by segen0. lcd_seg3 pf5 lcd segment line 3. segments 0, 1, 2 and 3 are controlled by segen0. lcd_seg4 pe8 lcd segment line 4. segments 4, 5, 6 and 7 are controlled by segen1. lcd_seg5 pe9 lcd segment line 5. segments 4, 5, 6 and 7 are controlled by segen1. lcd_seg6 pe10 lcd segment line 6. segments 4, 5, 6 and 7 are controlled by segen1. lcd_seg7 pe11 lcd segment line 7. segments 4, 5, 6 and 7 are controlled by segen1. lcd_seg8 pe12 lcd segment line 8. segments 8, 9, 10 and 11 are controlled by segen2. lcd_seg9 pe13 lcd segment line 9. segments 8, 9, 10 and 11 are controlled by segen2. lcd_seg10 pe14 lcd segment line 10. segments 8, 9, 10 and 11 are controlled by segen2. lcd_seg11 pe15 lcd segment line 11. segments 8, 9, 10 and 11 are controlled by segen2. lcd_seg12 pa15 lcd segment line 12. segments 12, 13, 14 and 15 are controlled by segen3. lcd_seg13 pa0 lcd segment line 13. segments 12, 13, 14 and 15 are controlled by segen3. lcd_seg14 pa1 lcd segment line 14. segments 12, 13, 14 and 15 are controlled by segen3. lcd_seg15 pa2 lcd segment line 15. segments 12, 13, 14 and 15 are controlled by segen3. lcd_seg16 pa3 lcd segment line 16. segments 16, 17, 18 and 19 are controlled by segen4. lcd_seg17 pa4 lcd segment line 17. segments 16, 17, 18 and 19 are controlled by segen4. lcd_seg18 pa5 lcd segment line 18. segments 16, 17, 18 and 19 are controlled by segen4. lcd_seg19 pa6 lcd segment line 19. segments 16, 17, 18 and 19 are controlled by segen4. lcd_seg20 pb3 lcd segment line 20. segments 20, 21, 22 and 23 are controlled by segen5. lcd_seg21 pb4 lcd segment line 21. segments 20, 21, 22 and 23 are controlled by segen5. lcd_seg22 pb5 lcd segment line 22. segments 20, 21, 22 and 23 are controlled by segen5. lcd_seg23 pb6 lcd segment line 23. segments 20, 21, 22 and 23 are controlled by segen5. letim0_out0 pd6 pb11 pf0 pc4 low energy timer letim0, output channel 0. letim0_out1 pd7 pb12 pf1 pc5 low energy timer letim0, output channel 1. leu0_rx pd5 pb14 pe15 leuart0 receive input. leu0_tx pd4 pb13 pe14 leuart0 transmit output. also used as receive input in half duplex commu- nication.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 53 www.silabs.com alternate location functionality 0 1 2 3 description leu1_rx pc7 pa6 leuart1 receive input. leu1_tx pc6 pa5 leuart1 transmit output. also used as receive input in half duplex commu- nication. lfxtal_n pb8 low frequency crystal (typically 32.768 khz) negative pin. also used as an optional external clock input pin. lfxtal_p pb7 low frequency crystal (typically 32.768 khz) positive pin. pcnt0_s0in pc13 pulse counter pcnt0 input number 0. pcnt0_s1in pc14 pulse counter pcnt0 input number 1. pcnt1_s0in pc4 pb3 pulse counter pcnt1 input number 0. pcnt1_s1in pc5 pb4 pulse counter pcnt1 input number 1. pcnt2_s0in pd0 pe8 pulse counter pcnt2 input number 0. pcnt2_s1in pd1 pe9 pulse counter pcnt2 input number 1. tim0_cc0 pa0 pa0 pd1 timer 0 capture compare input / output channel 0. tim0_cc1 pa1 pa1 pd2 timer 0 capture compare input / output channel 1. tim0_cc2 pa2 pa2 pd3 timer 0 capture compare input / output channel 2. tim0_cdti0 pa3 pc13 pf3 pc13 timer 0 complimentary deat time insertion channel 0. tim0_cdti1 pa4 pc14 pf4 pc14 timer 0 complimentary deat time insertion channel 1. tim0_cdti2 pa5 pc15 pf5 pc15 timer 0 complimentary deat time insertion channel 2. tim1_cc0 pc13 pe10 timer 1 capture compare input / output channel 0. tim1_cc1 pc14 pe11 timer 1 capture compare input / output channel 1. tim1_cc2 pc15 pe12 timer 1 capture compare input / output channel 2. tim2_cc0 pa12 timer 2 capture compare input / output channel 0. tim2_cc1 pa13 timer 2 capture compare input / output channel 1. tim2_cc2 pa14 timer 2 capture compare input / output channel 2. us0_clk pe12 pe5 usart0 clock input / output. us0_cs pe13 pe4 usart0 chip select input / output. us0_rx pe11 pe6 usart0 asynchronous receive. usart0 synchronous mode master input / slave output (miso). us0_tx pe10 pe7 usart0 asynchronous transmit.also used as receive input in half duplex communication. usart0 synchronous mode master output / slave input (mosi). us1_clk pb7 pd2 usart1 clock input / output. us1_cs pb8 pd3 usart1 chip select input / output. us1_rx pd1 usart1 asynchronous receive. usart1 synchronous mode master input / slave output (miso). us1_tx pd0 usart1 asynchronous transmit.also used as receive input in half duplex communication. usart1 synchronous mode master output / slave input (mosi). us2_clk pc4 pb5 usart2 clock input / output. us2_cs pc5 pb6 usart2 chip select input / output. us2_rx pb4 usart2 asynchronous receive. usart2 synchronous mode master input / slave output (miso). us2_tx pb3 usart2 asynchronous transmit.also used as receive input in half duplex communication.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 54 www.silabs.com alternate location functionality 0 1 2 3 description usart2 synchronous mode master output / slave input (mosi). 4.3 gpio pinout overview the specific gpio pins available in EFM32G840 is shown in table 4.3 (p. 54 ) . each gpio port is organized as 16-bit ports indicated by letters a through f, and the individual pin on this port in indicated by a number from 15 down to 0. table 4.3. gpio pinout port pin 15 pin 14 pin 13 pin 12 pin 11 pin 10 pin 9 pin 8 pin 7 pin 6 pin 5 pin 4 pin 3 pin 2 pin 1 pin 0 port a pa15 pa14 pa13 pa12 - - - - - pa6 pa5 pa4 pa3 pa2 pa1 pa0 port b - pb14 pb13 pb12 pb11 - - pb8 pb7 pb6 pb5 pb4 pb3 - - - port c pc15 pc14 pc13 pc12 - - - - pc7 pc6 pc5 pc4 - - - - port d - - - - - - - pd8 pd7 pd6 pd5 pd4 pd3 pd2 pd1 pd0 port e pe15 pe14 pe13 pe12 pe11 pe10 pe9 pe8 pe7 pe6 pe5 pe4 - - - - port f - - - - - - - - - - pf5 pf4 pf3 pf2 pf1 pf0 4.4 qfn64 package figure 4.2. qfn64 note: 1. dimensioning & tolerancing confirm to asme y14.5m-1994.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 55 www.silabs.com 2. all dimensions are in millimeters. angles are in degrees. 3. dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. dimension l1 represents terminal full back from package edge up to 0.1 mm is acceptable. 4. coplanarity applies to the exposed heat slug as well as the terminal. 5. radius on terminal is optional table 4.4. qfn64 (dimensions in mm) symbol a a1 a3 b d e d2 e2 e l l1 aaa bbb ccc ddd eee min 0.80 0.00 0.20 7.10 7.10 0.40 0.00 nom 0.85 - 0.25 7.20 7.20 0.45 max 0.90 0.05 0.203 ref 0.30 9.00 bsc 9.00 bsc 7.30 7.30 0.50 bsc 0.50 0.10 0.10 0.10 0.10 0.05 0.08 the qfn64 package uses nickel-palladium-gold preplated leadframe. all efm32 packages are rohs compliant and free of bromine (br) and antimony (sb). for additional quality and environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 56 www.silabs.com 5 pcb layout and soldering 5.1 recommended pcb layout figure 5.1. qfn64 pcb land pattern e a d p1 p2 p3 p4 p5 p6 p7 p8 c b p9 f g table 5.1. qfn64 pcb land pattern dimensions (dimensions in mm) symbol dim. (mm) symbol pin number symbol pin number a 0.85 p1 1 p8 64 b 0.30 p2 16 p9 65 c 0.50 p3 17 - - d 8.90 p4 32 - - e 8.90 p5 33 - - f 7.20 p6 48 - - g 7.20 p7 49 - -
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 57 www.silabs.com figure 5.2. qfn64 pcb solder mask e a d c b f g table 5.2. qfn64 pcb solder mask dimensions (dimensions in mm) symbol dim. (mm) symbol dim. (mm) a 0.97 e 8.90 b 0.42 f 7.32 c 0.50 g 7.32 d 8.90 - -
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 58 www.silabs.com figure 5.3. qfn64 pcb stencil design e a d c b x y z table 5.3. qfn64 pcb stencil design dimensions (dimensions in mm) symbol dim. (mm) symbol dim. (mm) a 0.75 e 8.90 b 0.22 x 2.70 c 0.50 y 2.70 d 8.90 z 0.80 1. the drawings are not to scale. 2. all dimensions are in millimeters. 3. all drawings are subject to change without notice. 4. the pcb land pattern drawing is in compliance with ipc-7351b. 5. stencil thickness 0.125 mm. 6. for detailed pin-positioning, see figure 4.2 (p. 54 ) . 5.2 soldering information the latest ipc/jedec j-std-020 recommendations for pb-free reflow soldering should be followed. the packages have a moisture sensitivity level rating of 3, please see the latest ipc/jedec j-std-033 standard for msl description and level 3 bake conditions. place as many and as small as possible vias underneath each of the solder patches under the ground pad.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 59 www.silabs.com 6 chip marking, revision and errata 6.1 chip marking in the illustration below package fields and position are shown. figure 6.1. example chip marking 6.2 revision the revision of a chip can be determined from the "revision" field in figure 6.1 (p. 59 ) . 6.3 errata please see the errata document for EFM32G840 for description and resolution of device erratas. this document is available in simplicity studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=mcus--32-bit
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 60 www.silabs.com 7 revision history 7.1 revision 1.71 november 21st, 2013 updated figures. updated errata-link. updated chip marking. added link to environmental and quality information. re-added missing dac-data. 7.2 revision 1.70 september 30th, 2013 added i2c characterization data. corrected gpio operating voltage from 1.8 v to 1.85 v. corrected the adc resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. updated the max v esdcdm value to 750 v. updated environmental information. updated trademark, disclaimer and contact information. other minor corrections. 7.3 revision 1.60 june 28th, 2013 updated power requirements in the power management section. removed minimum load capacitance figure and table. added reference to application note. other minor corrections. 7.4 revision 1.50 september 11th, 2012 updated the hfrco 1 mhz band typical value to 1.2 mhz. updated the hfrco 7 mhz band typical value to 6.6 mhz. other minor corrections. 7.5 revision 1.40 february 27th, 2012 updated power management section.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 61 www.silabs.com corrected operating voltage from 1.8 v to 1.85 v. corrected tgrad adcth parameter. corrected qfn64 package drawing. updated pcb land pattern, solder mask and stencil design. 7.6 revision 1.30 may 20th, 2011 updated lfxo load capacitance section. 7.7 revision 1.20 december 17th, 2010 increased max storage temperature. added data for <150c and <70c on flash data retention. changed latch-up sensitivity test description. added io leakage current. added flash current consumption. updated hfrco data. updated lfrco data. added graph for adc absolute offset over temperature. added graph for adc temperature sensor readout. 7.8 revision 1.11 november 17th, 2010 corrected maximum dac clock speed for continuous mode. added dac sample-hold mode voltage drift rate. added pulse widths detected by the hfxo glitch detector. added power sequencing information to power management section. 7.9 revision 1.10 september 13th, 2010 added typical values for r adcfilt and c adcfilt . added two conditions for dac clock frequency; one for sample/hold and one for sample/off. added rohs information and specified leadframe/solderballs material. added serial bootloader to feature list and system summary.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 62 www.silabs.com updated adc characterization data. updated dac characterization data. updated rco characterization data. updated acmp characterization data. updated vcmp characterization data. 7.10 revision 1.00 april 23rd, 2010 adc_vcm line removed. added pinout illustration and additional pinout table. changed "errata" chapter. errata description moved to separate document. document changed status from "preliminary". updated "electrical characteristics" chapter. 7.11 revision 0.85 february 19th, 2010 renamed dbg_swv pin to dbg_swo. 7.12 revision 0.84 february 11th, 2010 corrected pinout tables. 7.13 revision 0.83 january 25th, 2010 updated errata section. specified flash word width in section 3.7 (p. 19 ) . added capacitive sense internal resistor values in section 3.12 (p. 42 ) . 7.14 revision 0.82 december 9th, 2009 updated contact information. adc current consumption numbers updated in section 3.10 (p. 31 ) . updated lcd supply voltage range in section 3.14 (p. 45 ) . 7.15 revision 0.81 november 20th, 2009
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 63 www.silabs.com section 3.1 (p. 9 ) updated. storage temperature in section 3.2 (p. 9 ) updated. temperature coefficient of band-gap reference in section 3.6 (p. 18 ) added. erase times in section 3.7 (p. 19 ) updated. definitions of dnl and inl added in figure 3.25 (p. 36 ) and figure 3.26 (p. 36 ) . section 3.14 (p. 45 ) added. current consumption of digital peripherals added in section 3.16 (p. 47 ) . updated errata section. 7.16 revision 0.80 initial preliminary revision, october 19th, 2009
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 64 www.silabs.com a disclaimer and trademarks a.1 disclaimer silicon laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the silicon laboratories products. characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "typical" parameters provided can and do vary in different applications. application examples described herein are for illustrative purposes only. silicon laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. silicon laboratories shall have no liability for the conse- quences of use of the information supplied herein. this document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. the products must not be used within any life support system without the specific written consent of silicon laboratories. a "life support system" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. silicon laboratories products are generally not intended for military applications. silicon laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. a.2 trademark information silicon laboratories inc., silicon laboratories, silicon labs, silabs and the silicon labs logo, cmems?, efm, efm32, efr, energy micro, energy micro logo and combinations thereof, "the world?s most ener- gy friendly microcontrollers", ember?, ezlink?, ezmac?, ezradio?, ezradiopro?, dspll?, iso- modem?, precision32?, proslic?, siphy?, usbxpress? and others are trademarks or registered trademarks of silicon laboratories inc. arm, cortex, cortex-m3 and thumb are trademarks or reg- istered trademarks of arm holdings. keil is a registered trademark of arm limited. all other products or brand names mentioned herein are trademarks of their respective holders.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 65 www.silabs.com b contact information silicon laboratories inc. 400 west cesar chavez austin, tx 78701 please visit the silicon labs technical support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 66 www.silabs.com table of contents 1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. system summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. system introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1. test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5. transition between energy modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.8. general purpose input output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9. oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.10. analog digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.11. digital analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.12. analog comparator (acmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.13. voltage comparator (vcmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.14. lcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.15. i2c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.16. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4. pinout and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1. pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2. alternate functionality pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3. gpio pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4. qfn64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5. pcb layout and soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.1. recommended pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2. soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6. chip marking, revision and errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1. chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2. revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3. errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7. revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.1. revision 1.71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.2. revision 1.70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.3. revision 1.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.4. revision 1.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.5. revision 1.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.6. revision 1.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.7. revision 1.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.8. revision 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.9. revision 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.10. revision 1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.11. revision 0.85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.12. revision 0.84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.13. revision 0.83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.14. revision 0.82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.15. revision 0.81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.16. revision 0.80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 a. disclaimer and trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 a.1. disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 a.2. trademark information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 b. contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 b.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 67 www.silabs.com list of figures 2.1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. EFM32G840 memory map with largest ram and flash sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1. em0 current consumption while executing prime number calculation code from flash with hfrco running at 28mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2. em0 current consumption while executing prime number calculation code from flash with hfrco running at 21mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3. em0 current consumption while executing prime number calculation code from flash with hfrco running at 14mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4. em0 current consumption while executing prime number calculation code from flash with hfrco running at 11mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5. em0 current consumption while executing prime number calculation code from flash with hfrco running at 7mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6. em1 current consumption with all peripheral clocks disabled and hfrco running at 28mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7. em1 current consumption with all peripheral clocks disabled and hfrco running at 21mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8. em1 current consumption with all peripheral clocks disabled and hfrco running at 14mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.9. em1 current consumption with all peripheral clocks disabled and hfrco running at 11mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.10. em1 current consumption with all peripheral clocks disabled and hfrco running at 7mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.11. em2 current consumption. rtc prescaled to 1khz, 32.768 khz lfrco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12. em3 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.13. em4 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.14. typical low-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.15. typical high-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16. typical low-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17. typical high-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.18. typical low-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.19. typical high-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.20. calibrated lfrco frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.21. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.22. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.23. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.24. calibrated hfrco 28 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.25. integral non-linearity (inl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.26. differential non-linearity (dnl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.27. adc frequency spectrum, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.28. adc integral linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.29. adc differential linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.30. adc absolute offset, common mode = vdd /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.31. adc dynamic performance vs temperature for all adc references, vdd = 3v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.32. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1. EFM32G840 pinout (top view, not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2. qfn64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1. qfn64 pcb land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2. qfn64 pcb solder mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3. qfn64 pcb stencil design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1. example chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 68 www.silabs.com list of tables 1.1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5. energy modes transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.8. gpio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9. lfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.10. hfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.11. lfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.12. hfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.13. ulfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.14. adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.15. dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.16. acmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.17. vcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.18. lcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.19. i2c standard-mode (sm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.20. i2c fast-mode (fm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.21. i2c fast-mode plus (fm+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.22. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1. device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2. alternate functionality overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. gpio pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4. qfn64 (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1. qfn64 pcb land pattern dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2. qfn64 pcb solder mask dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3. qfn64 pcb stencil design dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
...the world's most energy friendly microcontrollers 2013-11-22 - EFM32G840fxx - d0008_rev1.71 69 www.silabs.com list of equations 3.1. total acmp active current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2. vcmp trigger level as a function of level setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3. total lcd current based on operational mode and internal boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

mouser electronics authorized distributor click to view pricing, inventory, delivery & lifecycle information: silicon laboratories: ? EFM32G840f32-qfn64? EFM32G840f64-qfn64? EFM32G840f128-qfn64t? EFM32G840f64-qfn64t? EFM32G840f32-qfn64t? EFM32G840f128-qfn64


▲Up To Search▲   

 
Price & Availability of EFM32G840

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X